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LElTER TO THE EDITOR 

Critical dynamics of Heisenberg spins on self-avoiding-walk 
chains 

S Bhattacharya and B K Chakrabarti 
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, 
India 

Received 24 July 1984 

Abstract. The dynamical exponent z for the critical spin-wave dynamics of nearest- 
neighbour interacting Heisenberg spins on a self-avoiding-walk (SAW) chain is estimated 
here using a scaling picture and also applying a real-space renormalisation group technique 
to some quasilinear fractal lattices. The results indicate z = 2D4 where D is the fractal 
dimensionality of the SAW chain lattice and t is the exponent for the length of the shortest 
nearest-neighbour connecting path of the SAW. 

Recently we have proposed and studied the static critical properties of an Ising model 
with nearest-neighbour interactions on self-avoiding-walk (SAW) chains, where the 
SAWS themselves are executed on any d-dimensional lattice (Chakrabarti and Bhat- 
tacharya 1983, Bhattacharya and Chakrabarti 1984). An application of this important 
lattice statistical model may be in the study of phase transitions of magnetic polymers 
where each monomer of a linear polymer possesses localised magnetic moments (the 
monomer-monomer repulsion should be strong enough to resist the collapse of the 
SAW structure induced by the interactions between neighbouring monomers not con- 
nected by chemical bonds). Study of this model should also be interesting in connection 
with studies on magnetism of disordered solids near the percolation threshold, since 
a typical SAW configuration with nearest-neighbour connections can be considered 
equivalent to a 'generator' (links and blobs) of the backbone of the infinite percolating 
cluster (see, for example, Bhattacharya and Chakrabarti 1984). Our studies, mentioned 
above, indicated a finite transition temperature for such nearest-neighbour interacting 
king models on SAW chains and also a new static critical behaviour different from 
that of a one-dimensional Ising chain. 

In this letter we investigate the critical dynamics of nearest-neighbour interacting 
Heisenberg spins on SAW chains at zero temperature. Our analysis indicates that the 
dynamic exponent z = 2Dr, where D is the fractal dimensionality of the SAW lattice 
(Mandelbrot 1982) and t is the exponent for the shortest connection length of a SAW 

(Bhattacharya and Chakrabarti 1984). 
Let us consider a sufficiently large section (so that scaling laws hold good) of N 

steps of the SAW, as shown in figure 1. The Heisenberg spins on it are interacting with 
nearest-neighbour interactions ( J ) ,  so that the spin dynamics primarily follow the 
shortest nearest-neighbour connecting path from one end to the other of the SAW. 

Such a path is also indicated in figure 1, and has a length LN( < N) - N' (Bhattacharya 
and Chakrabarti 1984). Since along such a path, the dynamics is essentially like that 
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Figure 1. A typical SAW segment (full curve) of size N showing the shortest nearest- 
neighbour connecting path (broken curve), of length LN - N ‘ ,  through which the dynamics 
will primarily propagate. The average end-to-end distance is RN - N u .  

of a linear chain, the low-energy magnons will have a dispersion 

w ( Q )  =;JQ2,  (1) 

where the magnon wavevector Q is defined along the dynamical path of length LN 
which scales, compared to the (Euclidean) end-to-end distance R N ( -  N u )  as R g “  for 
Q-’ < R N ,  and as N ( ” - ” Q  for Q-’ 2 R N  ; v being the average end-to-end distance 
exponent for the SAW. The reduced wavevector q (defined in the Euclidean space) 
is, therefore, related to the dynamical wavevector Q as (cf Ziman 1979) 

(2) 
N(1-v) 0, f o r q s q , - N - ”  

Y for 4 ’ q c ,  4 = Q U / l  

giving the hydrodynamic form for the dispersion as 

where the dynamical exponent z = 2t/ v. Expressing v-’ as the fractal dimensionality 
D of the SAW lattice (Mandelbrot 1982), the dynamical exponent z may be expressed 
as 

z = 2 D t  (4) 

which, for example, for SAWS on two-dimensional lattices takes the value 2.61, since 
v = D-’ = 0.75 (Nienhuis 1982) and t = 0.977 (Bhattacharya and Chakrabarti 1984). 

One can also justify the above expression for the dynamical exponent z, applying 
real-space renormalisation group ( RSRG) technique to study critical dynamics (Stinch- 
combe 1983) of quasi-linear self-similar lattices like those shown in figure 2 (see, for 
example, Gefen et a1 1983). Heisenberg spins are placed on the sites along the length 
of such lattices and are assumed to interact with their nearest neighbours of the same 
segment (or the ‘generator’) with exchange J. The equation of motion for the transverse 
spin components Si, at site i is: 

RS, = C &(Si - S,),  ( 5 )  
J 

where R = w /  J, w is the characteristic frequency and K, = 1 if i, j are nearest neighbours 
and zero otherwise. 

We now apply the RSRG technique of Stinchcombe to the lattice in figure 2(a), 
with a scale factor b = 3. The corresponding renormalised dynamic variable R’ is 
formulated in such a way that the dynamic relationships between the remaining 
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Figure 2. Quasilinear fractal lattices formed by repeating the basic unit or the ‘generator’ 
(‘ne’ in ( a )  and ‘ag’ in (b))  in a self-similar way. The additional nearest-neighbour 
interactions are shown by broken lines. The fractal dimension D for the lattice ( a )  is 
In 4/ln 3 and that for lattice (b)  is In 6/ln 5. 

variables (between spins (aj),  (ae), (ef), (fi) and also (af)) are preserved. Following 
the same intermediate transformations as that used in Gefen et a1 (1983) for the thermal 
problem of Ising spins on the lattice of figure 2(a),  we obtain 

R‘ = 16R - 200’ + 8R3 - R4. (6) 
Linearising this recursion relation (6) around the fixed points value R* (= 0) of R one 
obtains the dynamic exponent z as: 

z = 2(ln 4/ln 3) = 2 0 ,  (7) 

where D is the fractal dimensionality of the lattice of figure 2(a). Employing the same 
RSRG method on the fractal lattice of figure 2( b)  one obtains exactly the same result 
i.e. z = 2 0  ( D  =In 6/ln 5 for the lattice in figure 2(b)). Such an expression compares 
exactly with the expression (4), if t = 1 for such quasilinear fractal lattices. In fact, 
for such lattices the length of the shortest nearest-neighbour connecting path is just a 
finite fraction of the total length of the lattice, giving r = 1 exactly in such cases. 
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